Important Computational Complexity Classes

v3 Made Oct. 12, 2021 by @discretegames, based on MIT 6.890 Lecture 1 of Fall 2014 with Erik Demaine: youtu.be/7d73E1DiH0wv

Polynomial Time
$P=\left\{\right.$ problems solvable in polynomial time $\left.O\left(N^{k}\right)\right\}$
Non-Deterministic Polynomial Time
$N P=$ problems verifiable in polynomial time $\}$
Polynomial Space
PSPACE = \{problems solvable in polynomial space\}
Exponential Time
EXP $=\left\{\right.$ problems solvable in exponential time $\left.O\left(2^{N^{k}}\right)\right\}$
Recursive Languages
$R=$ \{problems solvable by a Turing machine in finite time $\}$

Hardness

X -Hard $=$ \{problems as hard as every problem in X \}

Completeness

X-Complete $=\{$ problems in X and X-Hard $\}$

By the time hierarchy theorem we know that P is strictly contained within EXP, or, viewing the diagram as a number line, that a <d.
Many assume that $a<b$ and $b<c$ and $c<d$ but we aren't certain about any of those. We only know that $a \leq b \leq c \leq d$ and $a<d$. It could be the case that $a=b=c$, and thus $P=N P=P S P A C E$.
If you can show that either $a=b$ or (more likely) $a \neq b$ then you will have solved the biggest unsolved problem in computer science and the Clay Institute will award you $\$ 1,000,000$. You will have solved P vs. NP.

A perhaps discouraging fact is that most problems are not even in R, that is, most problems are uncomputable.
This is because a decision problem maps all inputs to a yes or no, resulting in a powerset over the inputs. By Cantor's theorem that will have greater cardinality than the set of all possible algorithms because an algorithm is just a program, i.e. string, which can be encoded as a natural number.
Thankfully, most of the problems we care about are within EXP or even P.
There are infinite hierarchies of complexity classes not shown here, e.g. 2EXP, 3EXP, ... Indeed there's a whole complexity zoo: complexityzoo.net

